Feature learning for interpretable, Performant Decision Trees

January 8, 2024

Reviewr : Park Seok Hun

- 2 Fuzzy and Crisp Decision Tree
- **3** Kernel Density Decision Tree(KDDT)
- **4** Feature learning
- **5** Fuzzy into Crisp

- 2 Fuzzy and Crisp Decision Tree
- **3** Kernel Density Decision Tree(KDDT)
- 4 Feature learning
- **6** Fuzzy into Crisp

- Decision Tree :
 depth ↓ ▶ Performance ↓, Interpretable ↑
 - depth \uparrow Performance \uparrow , Interpretable \downarrow

• No matter how much the depth is increased, the performance on test data does not significantly outperform other models.

- They propose an algorithm that, through **feature learning**, generates a single tree with an appropriate depth for a Decision Tree while achieving good performance.
- Feature learning means that in the decision tree training, instead of X_j ≤ c, the algorithm contemplates f(X) ≤ c, and learning f during the training process where X = (X₁,...,X_p)'.

Example of feature transformation

(a) A decision tree is relatively complex and generalizes poorly.

(b) A random forest is very complex and generalizes better, but not perfectly.

(c) After rotation, a decision tree is simple and generalizes perfectly.

 Above picture demonstrates that through feature transformation, a single tree can achieve good performance.

- They propose alternating between learning a tree, similar to the CART, and performing feature learning based on gradients.
- For the feature learning, they consider Kernel Density Decision Tree(KDDT) which is differentiable.

1 Introduction

2 Fuzzy and Crisp Decision Tree

3 Kernel Density Decision Tree(KDDT)

4 Feature learning

6 Fuzzy into Crisp

6 Experiments

Problem of conventional Decision Tree(CART) :

Rule : If $X \le 3000$, X is classified as group A else B.

Then, X = 2999 and X = 3001 are classified as different group.

- This causes prediction errors for Decision Trees near the boundaries
- If CART deterministically split data into child node, FDT reflect the possibility of data being split into each child node (e.g., using probabilities)

• Crisp Decision Tree : CART

1 Introduction

2 Fuzzy and Crisp Decision Tree

3 Kernel Density Decision Tree(KDDT)

- 4 Feature learning
- **6** Fuzzy into Crisp

- KDDT is a model that expresses the likelihood of splitting into child nodes using a kernel to represent probabilities.
- Note that unlike CART, KDDT is the differentiable model.

Example

Let $X \in \mathbb{R}$ be a input vector. Then, we have $\mathbb{I}(X \in [a_j, b_j]) \rightarrow F(X - a_j) - F(X - b_j)$ where F is cdf of normal.

1 Introduction

- 2 Fuzzy and Crisp Decision Tree
- **3** Kernel Density Decision Tree(KDDT)

4 Feature learning

6 Fuzzy into Crisp

6 Experiments

- Any differentiable parameterized class of feature transforms can be used.
- example : Linear transformation $\mathbf{X} \rightarrow A\mathbf{X} + b$
- When training rule in the KDDT, feature learning is conducted based on gradient method for the impurity measure.

- 2 Fuzzy and Crisp Decision Tree
- **3** Kernel Density Decision Tree(KDDT)
- 4 Feature learning
- **5** Fuzzy into Crisp

- In the KDDT paper, they proposed the method for converting fuzzy decision trees to crisp decision trees, and it seems to be employed here.
- However, the details are not elaborated upon, and there is no code available.
- Note that the performance slightly degrades during the converting.

- 2 Fuzzy and Crisp Decision Tree
- **3** Kernel Density Decision Tree(KDDT)
- 4 Feature learning
- **6** Fuzzy into Crisp

Experiments

data	LR	MLP	DT	RF	ET	XGB	ours: linear	
n, p, q							fuzzy	crisp
iris [18]	0.960	0.953	0.947	0.947	0.953	0.947	0.960	0.960
150, 4 (4), 3	-	-	6.4	7.2e2	2.1e3	4.3e2	6.1	7.6
heart-disease [30]	0.822	0.792	0.707	0.802	0.795	0.792	0.812	0.812
303, 13 (20), 2	-	-	13.9	4.8e3	1.1e4	7.9e2	21.6	19.4
dry-bean [31]	0.925	0.934	0.912	0.923	0.921	0.928	0.920	0.913
13611, 16 (16), 7	-	-	99.8	6.7e4	2.0e5	1.3e4	1.1e2	45.8
wine [1]	0.983	0.989	0.904	0.977	0.989	0.955	0.983	0.983
178, 13 (13), 3	-	-	8.5	9.4e2	3.3e3	2.4e2	2.0	2.0
car [5]	0.926	0.992	0.977	0.964	0.971	0.994	0.991	0.992
1728, 6 (21), 4	-	-	95.3	2.3e4	3.1e4	4.5e3	29.0	29.0
wdbc [44]	0.974	0.975	0.935	0.965	0.970	0.968	0.972	0.972
569, 30 (30), 2	-	-	13.0	1.9e3	6.0e3	2.7e2	1.3	1.3
sonar [38]	0.755	0.879	0.735	0.826	0.880	0.855	0.818	0.799
208, 60 (60), 2	-	-	14.1	2.0e3	5.6e3	3.0e2	5.7	3.9
pendigits [2]	0.952	0.994	0.964	0.993	0.994	0.991	0.981	0.976
10992, 16 (16), 10	-	-	3.2e2	3.8e4	9.8e4	8.5e3	2.6e2	2.4e2
ionosphere [39]	0.875	0.917	0.892	0.934	0.943	0.943	0.932	0.920
351, 34 (34), 2	-	-	15.5	2.2e3	5.9e3	3.4e2	3.9	5.5

• Even as a single tree, proposed model performs well.

• The above results is from converted crisp proposed model.