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Property of Decision Tree

• Decision Tree :

depth ↓ ▶ Performance ↓, Interpretable ↑
depth ↑ ▶ Performance ↑, Interpretable ↓

• No matter how much the depth is increased, the performance
on test data does not significantly outperform other models.
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Introduction

• They propose an algorithm that, through feature learning,
generates a single tree with an appropriate depth for a
Decision Tree while achieving good performance.

• Feature learning means that in the decision tree training,
instead of Xj ≤ c , the algorithm contemplates f (X) ≤ c , and
learning f during the training process where X = (X1, ...,Xp)

′.
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Example of feature transformation

• Above picture demonstrates that through feature
transformation, a single tree can achieve good performance.
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Proposed method

• They propose alternating between learning a tree, similar to
the CART, and performing feature learning based on gradients.

• For the feature learning, they consider Kernel Density Decision
Tree(KDDT) which is differentiable.
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Fuzzy Decision Tree(FDT)

Problem of conventional Decision Tree(CART) :

Rule : If X <= 3000, X is classified as group A else B.

Then, X = 2999 and X = 3001 are classified as different group.

• This causes prediction errors for Decision Trees near the
boundaries

• If CART deterministically split data into child node, FDT
reflect the possibility of data being split into each child node
(e.g., using probabilities)
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Crisp Decision Tree

• Crisp Decision Tree : CART
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Kernel Density Decision Tree(KDDT)

• KDDT is a model that expresses the likelihood of splitting into
child nodes using a kernel to represent probabilities.

• Note that unlike CART, KDDT is the differentiable model.

Example
Let X ∈ R be a input vector. Then, we have
I(X ∈ [aj , bj ]) −→ F (X − aj)− F (X − bj) where F is cdf of normal.
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Feature learning

• Any differentiable parameterized class of feature transforms
can be used.

• example : Linear transformation X −→ AX + b

• When training rule in the KDDT, feature learning is conducted
based on gradient method for the impurity measure.
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Fuzzy into Crisp

• In the KDDT paper, they proposed the method for converting
fuzzy decision trees to crisp decision trees, and it seems to be
employed here.

• However, the details are not elaborated upon, and there is no
code available.

• Note that the performance slightly degrades during the
converting.
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Experiments

• Even as a single tree, proposed model performs well.
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Experiments

• The above results is from converted crisp proposed model.
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